Scientists to Compete at Algorithms for Predicting Lung Decline in IPF

Scientists to Compete at Algorithms for Predicting Lung Decline in IPF
4.3
(10)

The Open Source Imaging Consortium (OSIC), a nonprofit collaborative group focused on combatting lung diseases, has launched a competition aiming to create artificial intelligence (AI) programs that can help to predict lung function decline in people with pulmonary fibrosis.

Called the OSIC Pulmonary Fibrosis Progression Challenge, it is being administered by the data science community platform Kaggle, and is open to all researchers and clinicians wishing to participate either individually or in teams.

The winner will be awarded $30,000. Second place gets $15,000, and third place gets $10,000. The deadline for entry is September 29; the final submission deadline is October 6.

“OSIC was created to bring divergent groups together to look at new ways of fighting complex lung disease,” Elizabeth Estes, the executive director of OSIC, said in a press release. “In addition to utilizing expertise from academia, industry and philanthropy, we wanted to introduce clinicians to the broader artificial intelligence and machine learning community to see if new eyes and new tools could help us move forward, faster. We are excited to see the progress that can be made for patients all over the world.”

According to its website, OSIC’s “mission” is to unite radiologists, clinicians, and computational scientists worldwide in working to improve imaging-based treatments.

Idiopathic pulmonary fibrosis (IPF) is a disease of unknown cause characterized by progressive fibrosis (scarring) of the lungs, which impairs lung function. This scarring is visible on CT scans of the chest.

One challenge of caring for people with IPF is the difficulty in predicting how the disease will progress. That is, it’s hard to estimate how quickly an individual’s lung function is likely to decline.

“The heterogeneity of outcome in this disease complicates clinical decision making for individual patients, increasing their anxiety and fear,” said Kevin Brown, MD, a pulmonologist (lung doctor) at National Jewish Health who serves as OSIC’s lead pulmonologist.

Broadly, challenge participants will be tasked with creating AI programs that predict changes in lung function over time for people with IPF.

To build and train their algorithms, they will be given lung CT scans, taken at diagnosis, from IPF patients. Participants will also receive clinical information on the patients, as well as forced vital capacity (FVC) — a standard measure of lung health — collected over about two years of follow-up.

These scientists will then test their programs on a second group of patients, for whom they have access only to an initial lung CT scan, clinical data, and FVC measurement. Their goal is use their AI program to generate predictions about changes in lung function for these people — namely, what their final three FVC measurements will be.

Competitors’ predictions will be checked against real-world data from the test group, and specialized statistical algorithms will determine which predictor is best.

“Success in this challenge will help clinicians provide clarity to our patients, and ultimately improve treatment, trial design and accelerate the clinical development of novel therapies,” Brown said.

Marisa holds an MS in Cellular and Molecular Pathology from the University of Pittsburgh, where she studied novel genetic drivers of ovarian cancer. She specializes in cancer biology, immunology, and genetics. Marisa began working with BioNews in 2018, and has written about science and health for SelfHacked and the Genetics Society of America. She also writes/composes musicals and coaches the University of Pittsburgh fencing club.
Total Posts: 22

Inês holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Ciências e Tecnologias and Instituto Gulbenkian de Ciência.

×
Marisa holds an MS in Cellular and Molecular Pathology from the University of Pittsburgh, where she studied novel genetic drivers of ovarian cancer. She specializes in cancer biology, immunology, and genetics. Marisa began working with BioNews in 2018, and has written about science and health for SelfHacked and the Genetics Society of America. She also writes/composes musicals and coaches the University of Pittsburgh fencing club.
Latest Posts
  • cancer, fibrosis and risk
  • Ofev
  • G-CSF
  • UCHL1 protein and fibrosis

How useful was this post?

Click on a star to rate it!

Average rating 4.3 / 5. Vote count: 10

No votes so far! Be the first to rate this post.

As you found this post useful...

Follow us on social media!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?